jueves, 13 de octubre de 2011

Ley de Hooke en sólidos elásticos


En la mecánica de sólidos deformables elásticos la distribución de tensiones es mucho más complicada que en un resorte o una barra estirada sólo según su eje. La deformación en el caso más general necesita ser descrita mediante un tensor de deformaciones mientras que los esfuerzos internos en el material necesitan se representados por un tensor de tensiones. Estos dos tensores están relacionados por ecuaciones lineales conocidas por ecuaciones de Hooke generalizadas o ecuaciones de Lamé-Hooke, que son las ecuaciones constitutivas que caracterizan el comportamiento de un sólido elástico lineal. Estas ecuaciones tienen la forma general:
\sigma_{ij} = \sum_{k,l} C_{ijkl}\varepsilon_{kl} \,
Gran parte de las estructuras de ingeniería son diseñadas para sufrir deformaciones pequeñas,se involucran sólo en la recta del diagrama de esfuerzo y deformación.
De tal forma que la deformación Є es una cantidad adimencional,el modulo E se expresa en las mismas unidades que el esfuerzo σ (unidades pa, psi y ksi).El máximo valor del esfuerzo para el que puede emplearse la ley de Hooke en un material es conocido como límite de proporcionalidad de un material .En este caso, los materiales dúctiles que poseen un punto de cedencia definido;en ciertos materiales no puede definirse la proporcionalidad de cedencia fácilmente, ya que es difícil determinar con precisión el valor del esfuerzo σ para el que la similitud entre σ y Є deje de ser lineal. Al utilizar la ley de Hooke en valores mayores que el límite de proporcionalidad no conducirá a ningún error significativo. En resistencia de materiales se involucra en las propiedades físicas de materiales,como resistencia ,ductibilidad y resistencia de corrosión;que pueden afectarse debido a la aleación ,el tratamiento térmico y el proceso de manofactura.


 Caso unidimensional

En el caso de un problema unidimensional donde las deformaciones o tensiones en direcciones perpendiculares a una dirección dada son irrelevantes o se pueden ignorar σ = σ11, ε = ε11C11 = E y la ecuación anterior se reduce a:
 \sigma = E\epsilon \,
donde E es el módulo de Young.

 Caso tridimensional isótropo

Para caracterizar el comportamiento de un sólido elástico lineal e isótropo se requieren además del módulo de Young otra constante elástica, llamada coeficiente de Poisson (ν). Por otro lado, las ecuaciones de Lamé-Hooke para un sólido elástico lineal e isótropo pueden ser deducidas del teorema de Rivlin-Ericksen, que pueden escribirse en la forma:
\epsilon_{xx} = \frac{1}{E}\left( \sigma_{xx} - \nu(\sigma_{yy}+\sigma_{zz}) \right) \qquad \epsilon_{xy} = \frac{(1+\nu)}{E}\sigma_{xy}
\epsilon_{yy} = \frac{1}{E}\left( \sigma_{yy} - \nu(\sigma_{xx}+\sigma_{zz}) \right) \qquad \epsilon_{yz} = \frac{(1+\nu)}{E}\sigma_{yz}
\epsilon_{zz} = \frac{1}{E}\left( \sigma_{zz} - \nu(\sigma_{xx}+\sigma_{yy}) \right) \qquad \epsilon_{xz} = \frac{(1+\nu)}{E}\sigma_{xz}
En forma matricial, en términos del módulo de Young y el coeficiente de Poisson como:

\begin{pmatrix}
 \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}
 =
\begin{pmatrix}
  \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & & & \\
  -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & & & \\  
  -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} \\
  & & & \frac{(1+\nu)}{E} & 0 & 0 \\
  & & & 0 & \frac{(1+\nu)}{E} & 0 \\
  & & & 0 & 0 & \frac{(1+\nu)}{E} \\
\end{pmatrix}
\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}
Las relaciones inversas vienen dadas por:

\begin{pmatrix}
  \sigma_{xx}\\
  \sigma_{yy}\\  
  \sigma_{zz}\\
  \sigma_{xy}\\
  \sigma_{xz}\\  
  \sigma_{yz}
\end{pmatrix}
 =
\frac{E}{1+\nu}
\begin{pmatrix}
  \frac{1-\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & & & \\
  \frac{\nu}{1-2\nu} & \frac{1-\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & & & \\
  \frac{\nu}{1-2\nu} & \frac{\nu}{1-2\nu} & \frac{1-\nu}{1-2\nu} & & & \\
  & & & 1 & 0 & 0 \\
  & & & 0 & 1 & 0 \\
  & & & 0 & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
  \varepsilon_{xx}\\
  \varepsilon_{yy}\\  
  \varepsilon_{zz}\\
  \varepsilon_{xy}\\
  \varepsilon_{xz}\\  
  \varepsilon_{yz}
\end{pmatrix}

No hay comentarios:

Publicar un comentario